Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

“Rubber Coupling” at a 4×4 Transmition System

2003-11-18
2003-01-3684
There are many different vibration sources in a car. Engine, gears, road roughness, impacts against the wheels cause vibration and sound that can decrease the parts and the car durability as well as affect drivability, safety and passengers and community comfort. In 4×4 cars, some extra vibration sources are the parts responsible for transmitting the torque and power to the rear wheels. Each of them has their own vibration modes, excited mostly by its imbalance or by the second order engine vibration. The engine vibration is a very well known phenomena and the rear driveshaft is designed not to have any vibration mode in the range of frequencies that the engine works or its second order. The imbalance of a driveshaft is also a design requirement. That means, the acceptable imbalance of the driveshaft is limited to a maximum value.
Technical Paper

“RoHS” Compliant Chrome - Free Conversion Coating for Aerospace Manufacturing

2006-09-12
2006-01-3130
This paper presents, chemistry, test data and processing procedures on a non toxic and environmentally friendly chrome-free conversion coating alternative with the same level of adhesion and secondary corrosion resistance as that found in chrome containing conversion coating systems. Test data from military and independent sources will be presented on secondary coating adhesion, electrical conductivity, filiform and neutral salt-spray corrosion resistance as compared to chromate based systems .on magnesium, aluminum and zinc and their respective alloys. The European “RoSH” initiative will not allow for the presence of any hexavalent chromium on imported electrical components as of July first of 2006. Trivalent chromium based systems generate hexavalent chromium due to the oxidation of the trivalent chromium and as such will not be allowed.
Technical Paper

“Rigidization-on-Command”™ (ROC) Resin Development for Lightweight Isogrid Booms with MLI

2003-07-07
2003-01-2342
The “Rigidization-on-Command”™ (ROC™) resin development has focused on the development of resin systems that use UV light cure for rigidization. Polymeric sensitizers have been incorporated into the resin formulations to promote cure using Pen-Ray lamps and UV light-emitting diodes (LED's). Formulations containing the polymeric sensitizers were examined by FTIR and DSC. Complete cure was observed after 15 min. exposure with the Pen-Ray lamps. Performance of the Pen-Ray lamps and UV LEDs was thoroughly characterized. Thermal models were developed to optimize the performance of the of the MLI insulation thermal oven used for orbital cure of the boom. Results show that -12°C is the lowest temperature required for cure of the ROC™ resin systems.
Technical Paper

“Real-Time Estimation of Soot for a Wall Flow DPF Regeneration Management and an Efficient DOE for Model Calibration.”

2021-09-22
2021-26-0333
Estimation of soot deposited on a wall flow type DPF, is a vital information to ensure safe and efficient DPF management. Accuracy in determining mass of soot present inside the DPF ensures a correct regeneration management strategy in-terms of fuel efficiency and DPF safety considering soot overloading and too frequent regenerations. It also ensures an efficient detection of anomalies in the PM filtration mandated by the BSVI/EURO VI legislation as a part of On-board diagnostics. Classical approach of determining soot present inside DPF involves monitoring increase in pressure drop. Real time usage of such a model is limited by the inaccuracy of measuring pressure drop at low exhaust flows. Hence, contemporary engine controllers use pressure drop based models as a failsafe and estimate DPF soot loading by modelling soot release rate due to engine combustion and the rate at which it is oxidized.
Technical Paper

“Rds_on” Based OBD for Pre-Supply Fuel Pump Driver Modules

2017-01-10
2017-26-0348
In automotive electronics on-board diagnostics does the fault diagnosis and reporting. It provides the level of robustness required for the control electronics against various faults. The amount of diagnostic information available via on board diagnostics are depends on the type of vehicle. Pre-supply fuel pump is the component in the common rail hydraulic system. It pumps the fuel from the fuel tank to the inlet valve of the high pressure fuel pump. Electronic control unit synchronizes its operation with high pressure fuel pump. A dedicated driver module in the ECU controls the operation of pre-supply fuel pump. The driver module consist of an ASIC with internal voltage, current monitoring modules for the fault diagnosis and the pre-drivers to control external HS and LS power stages. The software part of the OBD programmed in the internal memory of the ASIC. The “Rds_on” of the power MOSFETs are used for the fault detection purpose.
Technical Paper

“Personal Integrity” and Man-Machine Integration

1982-02-01
821348
A sense of “personal integrity” blocks pilot use of new information about how he thinks. Research on human performance under stress done over the past fifty years indicates increased rigidity and regression to earlier learned behavior in high stress, and in low Stress a shift in attention to any domestic situation or on the job controversy which is of higher stress than that of the job at hand, all without the pilot's knowledge. Informal surveys of commercial pilot training and commercial pilot attitudes towards these studies indicate that the study findings directly confront learned cultural responses. Pilot and trainer reactions prevent the information from being adequately investigated or formally taught. The findings are not written into training manuals and pilots who are informally given the information do not have adequate access to the knowledge when it is needed.
Technical Paper

“Pedestrian in the Loop”: An Approach Using Augmented Reality

2018-04-03
2018-01-1053
A large number of testing procedures have been developed to ensure vehicle safety in common and extreme driving situations. However, these conventional testing procedures are insufficient for testing autonomous vehicles. They have to handle unexpected scenarios with the same or less risk a human driver would take. Currently, safety related systems are not adequately tested, e.g. in collision avoidance scenarios with pedestrians. Examples are the change of pedestrian behaviour caused by interaction, environmental influences and personal aspects, which cannot be tested in real environments. It is proposed to use augmented reality techniques. This method can be seen as a new (Augmented) Pedestrian in the Loop testing procedure.
Technical Paper

“Over the Rainbow”

1987-10-01
872499
To a large degree all of us at one time or another have envisioned our “Over the Rainbow” version of a future should be. System engineers envision perfect harmony between vehicle aerodynamics and avionics integration. The program manager dreams of schedules and funding well within the projected budget. Then reality; budget constraints, backward compatibility, technology availability, schedule problems, and etc. This paper is intended to recognize the “dreamer” and at the same time offer a means of reconciliation to the real world. We will address advanced avionics architectures and a transitionary means to attain our goals and objectives. An “Avionics System Index” will be presented which defines and specifies a means of describing and partitioned avionics configuration.
Technical Paper

“Omega” Fin Design for Enhanced Cooling Capability on IGBTs

2020-04-14
2020-01-0597
Vehicle electrification is a rapidly growing and developing technology. As with any new technology there are hurdles that must be overcome as development marches forward. Overcoming these obstacles will require new and innovative solutions. One area of electrification that is quickly developing is the ability to convert voltage from AC to DC and from DC to AC. This is important since the battery pack outputs a DC voltage which must be converted to AC to drive the electric motor. The reverse is true when braking, the AC voltage generated by the electric motor is converted to DC in order to charge the battery. The conversion of voltage back and forth is controlled through the use of an inverter. The inverter uses Insulated-Gate Bipolar Transistors or IGBTs which generate heat while in operation. As the IGBTs heat up their efficiency goes down. In order to maintain a high level of efficiency the circuity can be directly cooled through the use of a heat sink.
Technical Paper

“Multi Vector” Field of View Design Tool

2004-03-08
2004-01-0380
A multi vector design tool to accurately predict instrument panel obscuration was developed to insure that critical legal displays in vehicles are not obscured. The concept provides for a computer generated light source shaped to replicate the human eyes. The light source is then projected onto a 3D math based arrangement and the resultant shadows are visible on the instrument panel surface and its displays. Design studios require criteria for the placement of the instrument cluster gages and displays, various controls, switches, and steering column stalks before an interior theme can be completed. Therefore, instrument panel obscuration and visibility must be determined early in the design process. The obscured areas are a function of the instrument panel surface, steering wheel rim, hub, spokes, and the location of the driver's eyes. This light source method allows engineers and designers the ability to quickly determine obscured areas.
Technical Paper

“Motion in FEA”: An Innovative Approach for More Physical and More Accurate Vehicle Dynamics Simulation

2012-04-16
2012-01-0762
Vehicle dynamics is a discipline of mechanical engineering that benefited of significant improvements thanks to the progress of computational engineering. Vehicle dynamics engineers are using CAE for the development of a vehicle with MBS and FEA. The concurrent use of these two technologies is a standard in the automotive industry. However the current simulation process is not fully efficient because local geometrical and material nonlinearities are not accurately modeled in classical MBS software. This paper introduces a methodology for vehicle dynamics simulation integrating MBS capabilities in one single nonlinear FEA environment enabling an accurate modeling of nonlinearity in vehicles.
Technical Paper

“Model Based Software Development for Automotive Electronic Control Units”

2004-10-18
2004-21-0038
The migration of automotive companies to model based engineering for the software development of electronic control units, ECU’s, has been driven largely by three potential benefits; cycle time reduction, quality improvement, and defect reduction. Through an examination of the process and methodology used during an actual project with an automotive OEM, this paper shall discuss some of the lessons learned during the project implementation phase. It will also explore how the deployment of an effective model based engineering process framework, process components, and methodology can assist an organization in realizing the documented benefits of model based engineering.
Technical Paper

“Model Based Predictive Control of MELISSA Photobioreactors. Steady State Determination”

1994-06-01
941411
Mathematical modeling and control of artificial ecosystems, such as MELISSA, require first the study of physical and biological characteristics in optimal and limiting conditions. Following the previous determination of the stoichiometric equations (Spirulina compartment) and regarding the two phototrophic compartments of MELISSA (Rhodospirillaceae and Spirulina), we have first to focus our control study on the growth kinetics for the light source. In this paper, we recall the theoretical equations of microbial growth kinetics and emphasise the problem of the light transfer in a photobioreactor. We present their adaptations to our pilot plant taking into account technological and biological specifics (lamp spectrum, working illuminated volume, growth rate,…). We then develop the principles and structure of the control system and describe tests of both the hardware and software for several steady state configurations.
Technical Paper

“MONOGAL”: A New Anti-Corrosion Material for the Automotive Industry

1982-02-01
820335
MONOGAL is a coated steel developped to improve the corrosion resistance of exposed automotive body applications. Its process os based on the brittleness of the η zinc coating in a range of temperatures below the melting point of the zinc. MONOGAL is produced on a hot dip galvanizing line; at the exit of the pot the free zinc is brushed off the light side of the differentially coated sheet. Side 1 of MONOGAL presents a very thin and continuous layer of iron-zinc diffusion alloy with no free zinc. Side 2 is a standard G90 or G60 zinc coating. The iron-zinc alloy layer has excellent anti-galling properties which improve the formability of MONOGAL over two side hot dip galvanized steel with the same r value. MONOGAL also shows good weldability, paintability and corrosion resistance.
Technical Paper

“Just-in-Time” Battery Charge Depletion Control for PHEVs and E-REVs for Maximum Battery Life

2009-04-20
2009-01-1384
Conventional methods of vehicle operation for Plug-in Hybrid Vehicles first discharge the battery to a minimum State of Charge (SOC) before switching to charge sustaining operation. This is very demanding on the battery, maximizing the number of trips ending with a depleted battery and maximizing the distance driven on a depleted battery over the vehicle's life. Several methods have been proposed to reduce the number of trips ending with a deeply discharged battery and also eliminate the need for extended driving on a depleted battery. An optimum SOC can be maintained for long battery life before discharging the battery so that the vehicle reaches an electric plug-in destination just as the battery reaches the minimum operating SOC. These “Just-in-Time” methods provide maximum effective battery life while getting virtually the same electricity from the grid.
Technical Paper

“Jet Air” Compressor Control System

1971-02-01
710203
This paper describes the interrelated controls for automatic start sequencing, fuel scheduling, customer air delivery, and supervisory and protective systems as applied to the Curtiss-Wright CW657E “Jet-Air” Compressor. Model CW657E is capable of delivering 15,000 SCFM air at 85 psig (at 30°F and sea level pressure) and may be used in a diversity of manufacturing, processing, and industrial applications. A description of the control system and its operation in relation to compressor requirements, while furnishing air to feed distribution lines to air assisted water atomizing nozzles for snow making is reviewed as an example. Other models can deliver up to 30,000 SCFM with modified control systems, including pressure controls.
Technical Paper

“Insert and Fly” Using PCMCIA PC Cards in the Avionics Market

1994-11-01
942553
When looking into using PCMCIA PC Cards in the avionics market, three areas must be researched. The first is what are the applications and benefits of using the PC Cards while in flight, followed by the applications and benefits on the ground, and thirdly on how to make a PC Card that would stand up to the rugged avionics environment. PCMCIA PC Cards can be used in all aspects of flight. Three possible applications on the ground are; paperless documentation, modifications, flightline changes. Once airborne, PC Cards can be removed and a different functionality card can be inserted. One PC card socket can be used for many different functions during one flight. Some of the possible applications for PC Cards inflight are; flight plan changes, backup Line Replaceable Units (LRUs), and solid state data collection.
Technical Paper

“Implementation of Lithium Ion Battery System” for FCX Clarity

2009-04-20
2009-01-1013
A lithium ion battery system has been developed for use in Honda's FCX Clarity fuel cell vehicle. This represents the first time that Honda has employed lithium ion batteries. The battery system equals the high level of power of the ultracapacitor system used in the previous FCX vehicle but achieves a higher level of energy, contributing to various improvements in performance, such as the Clarity's superior acceleration feel and improved fuel efficiency. The system displays sufficient durability and reliability at the same time as satisfying requirements from the perspective of safety. In addition, positioning the battery system under the floor of the vehicle has increased cabin space, boosting the Clarity's commercial appeal.
Technical Paper

“HD Radio™: Efficient Infotainment and Telematics Delivery Method, Meeting the Need to Deliver Unique Local Content”

2006-10-16
2006-21-0070
The HD Radio™ system is a key element in the future convergence of technologies that are reinventing automobile Infotainment and Telematics. HD Radio Advanced Services data transport provides a flexible and addressable digital pipe to the vehicle. Traditionally, local AM/FM radio stations have been the primary source of mobile entertainment and information in the United States. And with the radio industry's conversion to digital broadcasting through the deployment of the Federal Communications Commission (FCC)-approved HD Radio system, terrestrial radio is now a superior method to deliver new and innovative content for local, regional and national telematics services.
Technical Paper

“Greater Than the Sum of its Parts” Integrated Flight Training/Aircrew Coordination

1994-10-01
942132
The requirement for crew resource management (CRM), or aircrew coordination training (ACT) in military parlance, has been well documented and attested to. In addition, aircraft systems training has become more intense and more in-depth in the new aircraft designs, especially in multi-crew and complex aircraft such as the MV-22 Osprey Tiltrotor. (see Figure 1) Former training systems detailed training procedures that called for classroom training and simulation/simulator training followed by flight training. Improvements in aircraft flight skills training provide increased flying training capability coupled with reduced training time by integrating a mixed simulation/flight training syllabus, e.g. two to three simulation periods followed by one or two flight training periods covering the same material/skills. In addition, the simulation training will introduce new skills; the following flight periods will further refine/hone those skills.
X